Hydrology

Presented by

Chris Milly

Hydrology: Preview

- 1 Land model LM3, used in all GFDL CMIP5 streams, contains new physical/hydrologic features that
 - improve fluxes to atmosphere and oceans;
 - support terrestrial biogeochemical modeling;
 - represent impact-relevant hydrologic variables (streamflow, lake levels, water table).
- 2 A focus on potential evapotranspiration (PET) helps reconcile conflicting projections of water availability and drought.

LM3 Hydrology: Features

LM3 Hydrology: Stand-Alone Evaluation

LM3 storage variables compare well with observations.

annual range of water storage (mm)

LM3 Hydrology: Evaluation

LM3 reproduces permafrost extent well.

permafrost extent

DICE: Diurnal Land/Atmosphere Coupling Experiment

(credit: Adrian Lock, Martin Best)

Work in Progress: Toward LM4

Hill-slope tiling (Subin)

Urban tiling

- + Higher Resolution
- + Biogeochemistry (Shevliakova)

Potential Evapotranspiration

Many hydrologic impact analyses have PET as a pivotal link:

Potential Evapotranspiration

- In a case study, PET change had been overestimated by a factor of ~3 vs. that implicit in the climate model.
- Substantial negative bias in runoff change results.
- SREX→AR5: "AR4 conclusions regarding global increasing drought since the 1970s were probably overstated."

(after Milly and Dunne [2011])

Hydrology: Recap

- 1 Land model LM3, used in all GFDL CMIP5 streams, contains new physical/hydrologic features that
 - improve fluxes to atmosphere and oceans;
 - support terrestrial biogeochemical modeling;
 - represent impact-relevant hydrologic variables (streamflow, lake levels, water table).
- ② A focus on potential evapotranspiration (PET) helps reconcile conflicting projections of water availability and drought.